2,072 research outputs found

    The Virgo High-Resolution CO Survey. II. Rotation Curves and Dynamical Mass Distributions

    Get PDF
    Based on a high-resolution CO survey of Virgo spirals with the Nobeyama Millimeter-wave Array, we determined the dynamical centers using velocity fields, and derived position-velocity diagrams (PVDs) along the major axes of the galaxies across their dynamical centers. We applied a new iteration method to derive rotation curves (RCs), which reproduce the observed PVDs. The obtained high-accuracy RCs generally show steep rise in the central 100 to 200 pc regions, followed by flat rotation in the disk. We applied a deconvolution method to calculate the surface-mass density (SMD) using the RCs based on two extreme assumptions that the mass distribution is either spherical or thin-disk shaped. Both assumptions give nearly identical results, agreeing with each other within a factor of two at any radii. The SMD distributions revealed central massive cores with peak SMD of 10^4 - 10^5 Msun pc^-2 and total mass within 200 pc radius of the order of about 10^9 Msun Correlation analysis among the derived parameters show that the central CO-line intensity is positively correlated with the central SMD, which suggests that the deeper is the gravitational potential, the higher is the molecular gas concentration in the nuclei regardless morphological types.Comment: PASJ 2003 in press, Latex 12 pages, 6 figures (Bigger gif/ps figures available at http://www.ioa.s.u-tokyo.ac.jp/radio/virgo2

    Temperature and Dimensionality Dependences of Optical Absorption Spectra in Mott Insulators

    Full text link
    We investigate the temperature dependence of optical absorption spectra of one-dimensional (1D) and two-dimensional (2D) Mott insulators by using an effective model in the strong-coupling limit of a half-filed Hubbard model. In the numerically exact diagonalization calculations on finite-size clusters, we find that in 1D the energy position of the absorption edge is almost independent of temperature, while in 2D the edge position shifts to lower energy with increasing temperature. The different temperature dependence between 1D and 2D is attributed to the difference of the coupling of the charge and spin degrees of freedom. The implications of the results on experiments are discussed in terms of the dimensionality dependence.Comment: 5 pages, 4 figure

    Resonant Two-Magnon Raman Scattering and Photoexcited States in Two-Dimensional Mott Insulators

    Full text link
    We investigate the resonant two-magnon Raman scattering in two-dimensional (2D) Mott insulators by using a half-filled 2D Hubbard model in the strong coupling limit. By performing numerical diagonalization calculations for small clusters, we find that the Raman intensity is enhanced when the incoming photon energy is not near the optical absorption edge but well above it, being consistent with experimental data. The absence of resonance near the gap edge is associated with the presence of background spins, while photoexcited states for resonance are found to be characterized by the charge degree of freedom. The resonance mechanism is different from those proposed previously.Comment: REVTeX4, 4 pages, 3 figures, to be published in Phys. Rev. Let

    Theoretical study of angle-resolved two-photon photoemission in two-dimensional insulating cuprates

    Get PDF
    We propose angle-resolved two-photon photoemission spectroscopy (AR-2PPES) as a technique to detect the location of the bottom of the upper Hubbard band (UHB) in two-dimensional insulating cuprates. The AR-2PPES spectra are numerically calculated for small Hubbard clusters. When the pump photon excites an electron from the lower Hubbard band, the bottom of the UHB is less clear, but when an electron in the nonbonding oxygen band is excited, the bottom of the UHB can be identified clearly, accompanied with additional spectra originated from the spin-wave excitation at half filling.Comment: 5 pages, 4 figure

    Equivalent Waveform Propagation for Static Timing Analysis

    Full text link

    Magnetic Phase Diagrams with Possible Field-induced Antiferroquadrupolar Order in TbB2_2C2_2

    Get PDF
    Magnetic phase diagrams of a tetragonal antiferromagnet TbB2_2C2_2 were clarified by temperature and field dependence of magnetization. It is noticeable that the N{\'e}el temperature in TbB2_2C2_2 is anomalously enhanced with magnetic fields, in particular the enhancement reaches 13.5 K for the {} direction at 10 T. The magnetization processes as well as the phase diagrams are well interpreted assuming that there appear field-induced antiferroquadrupolar ordered phases in TbB2_2C2_2. The phase diagrams of the AFQ compounds in RB2_2C2_2 are systematically understood in terms of the competition with AFQ and AFM interactions.Comment: 4 pages, 4 figures, RevTeX
    corecore